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Navigating Lab #2

● READ COMMENTS IN THE CODE



2

Free Physical Memory (init)
Physical memory

0x100000

end

In kern/pmap.c, boot_alloc

nextfree will point to the end of the kernel code/data

nextfree is virtual address.
You should allocate n bytes (rounding to PAGE boundary) 
and return the old pointer and update nextfree.

nextfree
Kernel Code
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page_init: free pages!

• in page_init()

Physical memory

Kernel Code
end

nextfree

struct PageInfo * pages

3

Free
Physical
Memory

Kernel Code
(in use)

EXTPHYSMEM

struct PageInfo * pages
(in use)

Page 0, in use

IOPHYSMEM (in use)
IOPHYSMEM
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page_init: free pages!
Physical memory

Kernel Code
end

nextfree

struct PageInfo * pages

Free
Physical
Memory

Kernel Code
(in use)

EXTPHYSMEM

struct PageInfo * pages
(in use)

Page 0, in use

IOPHYSMEM (in use)
IOPHYSMEM

● Iterate through the pages and mark all pages except for:
● Page 0
● Pages from IOPHYSMEM to nextfree (bootalloc(0))

● Add free pages to the list.
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Reuse your code

● boot_map_region: Inserts mapping of given VA -> PA of given size (page aligned)
with the given permission into a page directory.

● pgdir_walk: Gets the page table entry (or creates) corresponding to the given va in 
the given page directory.

●  page_lookup: Look up PageInfo corresponding to the given VA.

● Functions can be written by re-using other functions:
● page_lookup:

i. Can use pgdir_walk to get the pte
ii. Can get the physical address of the pte

iii. Convert the physical address to PageInfo using pa2page
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Today's Class

● Users, Programs and Process
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Users, Programs, Processes

● Users have accounts on the system
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Users, Programs, Processes

● Users have accounts on the system

● Users launch programs
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Users, Programs, Processes

● Users have accounts on the system

● Users launch programs
● Can many users launch the same program?
● Can one user launch many instances of the same program?
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Users, Programs, Processes

● Users have accounts on the system

● Users launch programs
● Can many users launch the same program?
● Can one user launch many instances of the same program?

🡪 A process is an “instance” of a program
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Program vs. Process

main()
{
...
foo()
...
}

foo()
{
    ...
}

      Program

main()
{
...
foo()
...
}

foo()
{
    ...
}

     Process

heap
stack
main
foo

registers
PC

Data
Code
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So What Is A Process?

● It is a running instance of a program.

● Program becomes alive through a process.

● Any relation between multiple instances of a program?
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So What Is A Process?

● It is a running instance of a program.

● Program becomes alive through a process.

● Any relation between multiple instances of a program?
● Ideally, No!
● How is the separation maintained?
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Process needs to communicate with OS

● Access system resources : 
● Network, Memory, Bluetooth, etc.
● Maintained by OS.

● How does the communication happen between a process and OS?
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Quick Detour: System Calls

● Interface between a process and the operating system kernel
● Kernel manages shared resources & exports interface
● Process requests for access to shared resources

● Generally available as assembly-language instructions:
● syscall
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Why can’t a process directly execute 
kernel code? Because Kernel code …

● Runs with the highest privilege level (Ring 0)
● Configures system (devices, memory, etc.)
● Manages hardware resources

● Disk, memory, network, video, keyboard, etc.
● Manages other jobs

● Processes and threads
● Serves as trusted computing base (TCB)

● Set privilege
● Restrict other jobs from doing something bad..

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries
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User mode process runs at Ring 3

● Runs with a restricted privilege (Ring 3)
● The privilege level for running an application…

● Most of regular applications runs in this level

● Cannot access kernel memory
● Can only access pages set with PTE_U

● Cannot talk directly to hardware devices
● Kernel must mediate the access

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

17
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

18
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

19

printf(“ECE469”)

A library call in ring 3
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

20

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

21

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

Interrupt!, switch from ring3 to ring0
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

22

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries
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printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

iret (ring 0 to ring 3)
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries
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printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

iret (ring 0 to ring 3)

ret (ring 3)
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Let's get back: Process

● Who has the ability to create a process?
● OS

● Who wants to create a process?

● How can we create a process?
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Let's get back: Process

● Who has the ability to create a process?
● OS

● Who wants to create a process?
● User/Program

● How can we create a process?
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Let's get back: Process

● Who has the ability to create a process?
● OS

● Who whats to create a process?
● User/Program

● How can we create a process?
● System call

● But, to do a syscall, we need a process!!!
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Process Creation
On boot, kernel starts an init process (usually systemd on ubuntu systems), 
which takes care of creating all other process.
Init can never die.

Process Tree
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Process State Transition

29

Running

BlockedReady

Scheduler
 

disp
atc

h W
ait for

resource

Resource becomes
available

Create
a process

terminate
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Process Information maintained by OS

● Usually Maintained in a structure called Process Control Block (PCB)

● Process management info
● State (ready, running, blocked)
● PC & Registers, parents, etc
● CPU scheduling info (priorities, etc.)

● Memory management info
● Segments, page table, stats, etc
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Process Identifier

● Every process has an ID – process ID

● Does a program know its process ID? 

● When a program is running, how does the process know its ID?
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OS Support for Process

● Support to create process

● Support to wait for a process completion

● Support to terminate a process
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OS Process API

● 4 system calls related to process creation/termination:

● Process Creation:
● fork/clone – create a copy of this process
● exec – replace this process with this program

● Wait for completion:
● wait – wait for child process to finish

● Terminate a process:
● kill - send a signal (to terminate) a process



34

fork

main()
{
...
foo()
...
I = fork()
}

foo()
{
    ...
}

             Process

heap

stack
main
foo

registers
PC

main()
{
...
foo()
...
I = fork()
}

foo()
{
    ...
}

        Process

heap

stack
main
foo

registers
PC

fork causes OS creates a copy of the calling process:
● Why?
● How can we disambiguate between new process and the calling process?
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exec
Replaces current process with the content from new program.

// b.out

main()
{
}

      Process

     New    Code
data
heap

New
stack

registers
PC

initialized

// a.out
main()
{
...
foo()
...
exec(“b.out”)
}

foo()
{
    ...
}

      Process

code
data
heap

stack
main
foo

registers
PC
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exec
Example
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wait
wait for a child process to finish 
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wait
What happens when the parent process dies? what happens to child process? 
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How our shell works?

● Fork/exec


