
Processes
ECE 469, Feb 04

Aravind Machiry

1

Navigating Lab #2

● READ COMMENTS IN THE CODE

2

Free Physical Memory (init)
Physical memory

0x100000

end

In kern/pmap.c, boot_alloc

nextfree will point to the end of the kernel code/data

nextfree is virtual address.
You should allocate n bytes (rounding to PAGE boundary)
and return the old pointer and update nextfree.

nextfree
Kernel Code

3

page_init: free pages!

• in page_init()

Physical memory

Kernel Code
end

nextfree

struct PageInfo * pages

3

Free
Physical
Memory

Kernel Code
(in use)

EXTPHYSMEM

struct PageInfo * pages
(in use)

Page 0, in use

IOPHYSMEM (in use)
IOPHYSMEM

4

page_init: free pages!
Physical memory

Kernel Code
end

nextfree

struct PageInfo * pages

Free
Physical
Memory

Kernel Code
(in use)

EXTPHYSMEM

struct PageInfo * pages
(in use)

Page 0, in use

IOPHYSMEM (in use)
IOPHYSMEM

● Iterate through the pages and mark all pages except for:
● Page 0
● Pages from IOPHYSMEM to nextfree (bootalloc(0))

● Add free pages to the list.

5

Reuse your code

● boot_map_region: Inserts mapping of given VA -> PA of given size (page aligned)
with the given permission into a page directory.

● pgdir_walk: Gets the page table entry (or creates) corresponding to the given va in
the given page directory.

● page_lookup: Look up PageInfo corresponding to the given VA.

● Functions can be written by re-using other functions:
● page_lookup:

i. Can use pgdir_walk to get the pte
ii. Can get the physical address of the pte

iii. Convert the physical address to PageInfo using pa2page

6

Today's Class

● Users, Programs and Process

7

Users, Programs, Processes

● Users have accounts on the system

8

Users, Programs, Processes

● Users have accounts on the system

● Users launch programs

9

Users, Programs, Processes

● Users have accounts on the system

● Users launch programs
● Can many users launch the same program?
● Can one user launch many instances of the same program?

10

Users, Programs, Processes

● Users have accounts on the system

● Users launch programs
● Can many users launch the same program?
● Can one user launch many instances of the same program?

🡪 A process is an “instance” of a program

11

Program vs. Process

main()
{
...
foo()
...
}

foo()
{
 ...
}

 Program

main()
{
...
foo()
...
}

foo()
{
 ...
}

 Process

heap
stack
main
foo

registers
PC

Data
Code

12

So What Is A Process?

● It is a running instance of a program.

● Program becomes alive through a process.

● Any relation between multiple instances of a program?

13

So What Is A Process?

● It is a running instance of a program.

● Program becomes alive through a process.

● Any relation between multiple instances of a program?
● Ideally, No!
● How is the separation maintained?

14

Process needs to communicate with OS

● Access system resources :
● Network, Memory, Bluetooth, etc.
● Maintained by OS.

● How does the communication happen between a process and OS?

15

Quick Detour: System Calls

● Interface between a process and the operating system kernel
● Kernel manages shared resources & exports interface
● Process requests for access to shared resources

● Generally available as assembly-language instructions:
● syscall

16

Why can’t a process directly execute
kernel code? Because Kernel code …

● Runs with the highest privilege level (Ring 0)
● Configures system (devices, memory, etc.)
● Manages hardware resources

● Disk, memory, network, video, keyboard, etc.
● Manages other jobs

● Processes and threads
● Serves as trusted computing base (TCB)

● Set privilege
● Restrict other jobs from doing something bad..

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

17

User mode process runs at Ring 3

● Runs with a restricted privilege (Ring 3)
● The privilege level for running an application…

● Most of regular applications runs in this level

● Cannot access kernel memory
● Can only access pages set with PTE_U

● Cannot talk directly to hardware devices
● Kernel must mediate the access

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

17

18

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

18

19

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

19

printf(“ECE469”)

A library call in ring 3

20

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

20

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

21

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

21

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

Interrupt!, switch from ring3 to ring0

22

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

22

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

23

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

23

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

iret (ring 0 to ring 3)

24

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

24

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

iret (ring 0 to ring 3)

ret (ring 3)

25

Let's get back: Process

● Who has the ability to create a process?
● OS

● Who wants to create a process?

● How can we create a process?

26

Let's get back: Process

● Who has the ability to create a process?
● OS

● Who wants to create a process?
● User/Program

● How can we create a process?

27

Let's get back: Process

● Who has the ability to create a process?
● OS

● Who whats to create a process?
● User/Program

● How can we create a process?
● System call

● But, to do a syscall, we need a process!!!

28

Process Creation
On boot, kernel starts an init process (usually systemd on ubuntu systems),
which takes care of creating all other process.
Init can never die.

Process Tree

29

Process State Transition

29

Running

BlockedReady

Scheduler

disp
atc

h W
ait for

resource

Resource becomes
available

Create
a process

terminate

30

Process Information maintained by OS

● Usually Maintained in a structure called Process Control Block (PCB)

● Process management info
● State (ready, running, blocked)
● PC & Registers, parents, etc
● CPU scheduling info (priorities, etc.)

● Memory management info
● Segments, page table, stats, etc

31

Process Identifier

● Every process has an ID – process ID

● Does a program know its process ID?

● When a program is running, how does the process know its ID?

32

OS Support for Process

● Support to create process

● Support to wait for a process completion

● Support to terminate a process

33

OS Process API

● 4 system calls related to process creation/termination:

● Process Creation:
● fork/clone – create a copy of this process
● exec – replace this process with this program

● Wait for completion:
● wait – wait for child process to finish

● Terminate a process:
● kill - send a signal (to terminate) a process

34

fork

main()
{
...
foo()
...
I = fork()
}

foo()
{
 ...
}

 Process

heap

stack
main
foo

registers
PC

main()
{
...
foo()
...
I = fork()
}

foo()
{
 ...
}

 Process

heap

stack
main
foo

registers
PC

fork causes OS creates a copy of the calling process:
● Why?
● How can we disambiguate between new process and the calling process?

35

exec
Replaces current process with the content from new program.

// b.out

main()
{
}

 Process

 New Code
data
heap

New
stack

registers
PC

initialized

// a.out
main()
{
...
foo()
...
exec(“b.out”)
}

foo()
{
 ...
}

 Process

code
data
heap

stack
main
foo

registers
PC

36

exec
Example

37

wait
wait for a child process to finish

38

wait
What happens when the parent process dies? what happens to child process?

39

How our shell works?

● Fork/exec

